Metric Correlation and Analysis Service "Scientific Dashboards"

Identify and evaluate areas in monitoring and troubleshooting which lack automation and usability features

A. Baranovski 11/10/2008

Index

- Concepts and strategy of the project
- Product survey
- Identifiable needs
- Technology survey
- How to move forward

Concept Areas

- Integrating metrics data feeds from various independently owned components
- Selecting or making cuts to multidimensional cube of diagnostic data
- Filtering of system views from general health to details of element status
- User interface. Intuitiveness and ease of use

Strategy

- Component driven software solution
- Adapt, organize access,transformation, and aid display of type agnostic metrics and diagnostic data.
 - Widgetization (template like UI elements to display details of data)
 - Publishing of data access interfaces
 - Basic data transformation and analysis

Existing infrastructures

- CMS Facilities
- LHC Dashboard
- FermiGrid
- Not nearly a complete list
 - Merely given to distinguish different approaches

CMS facility

- Status display and alarming are built from collection of many independent products
 - Zabbix
 - All in one : DB, display , alarming
 - dCache
 - State plotting tools w/o access to underlying data
 - Condor
 - cmd. tools and wrappers to retrieve and present status information
- Integrated solution supports close to 200000 metrics
- Status is observed by traversing collection of URLs pointing to aspects of interest

LHC dashboard

- What has happened to CMS production job from the perspective of CMS production job
 - Find all jobs with non zero exit code, identify data set used
- Checkpoint information sent to a central database
- Comprehensive GUI front-end
- Behind the scene uses MonaLisa message passing interface and Oracle data store

FermiGrid

- Facility driven product rich in features needed for optimal state reporting and problem detection
 - Health, summary, and drill down views
 - Data type agnostic storage of collections of independent metrics
 - File system like navigation of metrics
 - Integrated workflow engine to poll services for information needed for the display

Needs

- CMS
 - Dashboard
 - Troubleshooting
- CMS facility
- RunII

CMS / Dashboard

- Be able to mix together displays of different data sources
 - Batch queues, job success rates, transfer rates, etc
- Provide facility view configurable by the facility itself
- Health monitoring

CMS / Troubleshooting

- Expand capabilities of working with CMS dashboard
 - The difficulty with existing interface is inability to mine and present data in a way not predefined by default IU features
 - Challenging to express what you want to look at
- Need a better way to correlate information recorded by the dashboard with other (possibly real time) data sources
 - May be as simple as having plots and tables conveniently displayed on the same web page

CMS facility

- The operators task involve routine walk through collection of URLs
 - This is due to use of many independent reporting tools
- Need to aggregate all that into observable health status display.
 - LeMon at CERN is a good example
- Filtering (drill down view) of status information

Runll

- Monitoring is disparate
 - No common monitoring framework,
 - No common monitoring host for each experiment.
- Store and reformulate monitoring information to turn it into performance metrics
- Unified mechanism for retaining monitoring so that problems can be examined at some date after the fact.

Common needs

- Synthesis and navigation
- Dashboard Display

Synthesis and navigation

- Use cases where data access needs to span several monitoring realms
 - Connecting particular job info with storage state
 - Health function spanning several monitoring providers
 - Data transformations
- Navigation :
 - Exploring schema of metrics universe
- *Hint: Start from published interface to manage and access data

Dashboard display

- A view based on user defined rules to:
 - Define data
 - Transform data
 - Render
 - Compose final layout out of metrics universe
 - Create view navigation rules (or filtering)

Technology overview

- Technology areas most involved in our problem
 - Data integration
 - IU Web Widgets

Data integration questions

- Combining data residing at different sources and providing user with a unified view of these data
 - How to interpret meaning of elements originated from different data sources?
 - How to allocate, publish and navigate data schema?
 - How to transform or summarize data?

Approach to Data integration

- LAV (Local as view)
 - Data sources are viewed through wrapper mediating schema
 - Queries are dispatched using Mediated Virtual database
 - Example : Integrated environment Berkley XMLDB
 - XQuery over independent file based collections
- Mediating schema
 - Best model of the kinds of answers users want from a data source

XML-Based Mediator System

Technology for Dashboard

- Desired UI features
 - Renderer particular metrics using template query
 - May be parametrized by user supplied data
 - Define hierarchy of filtering rules
 - Summarize or snapshot existing UI front-ends
- The usual constrain is maximum value with minimum effort
- In this setting, the key requirements to selected technology are capabilities of reuse existing UI and decomposability of the end result

Technology for Dashboard

- "Web Widgets" is a paradigm of development and reuse of self contained UI components which can be organized in accordance to user preferences
 - A collection of tools and services which help distribution and implementation of coexistcapable and reusable Web codes
 - Thus, not a technology or standard in a classical sense
 - Reliant on existing HTML and Web Script agreements

Web 2.0 widgets explained

- Embeddable HTML code that requires no additional compilation
 - Java Script , Flash or other scripting languages
 - The code must be scoped

Web GUI, traditional architecture

Widgets based UI

Widgets based UI

What's next

- The project is complicated endeavor with several open ended questions
 - Primarily in areas of data integration and warehousing
- One tactical approach is to split the project
 - Phase I
 - Immediate need in composable UI components
 - Health displays (may need some of the features from II)
 - Phase II and beyond
 - Issues of integrating disjoint monitoring and diagnostic data providers into an abstract portal

References

- Project Web page
 - http://www.fnal.gov/docs/products/mcas/
- Research work on data integration
 - http://daks.ucdavis.edu/~ludaesch/Paper/AHN
- Web Widgets
 - http://dev.netvibes.com/doc/
- Answering queries using views
 - http://www.cs.uwaterloo.ca/~david/cs740/ans